Ceramic Matrix Composites (CMCs)

Ceramic matrix composites (CMCs) are a class of composite materials in which filler are incorporated within a ceramic matrix. As a result of filler addition to ceramic matrix, specific properties can be altered. There are various ways to manufacture ceramics and CMCs, mainly depending upon the filler material and the final application. One such property is a reduction in crack propagation. Although their constituents are brittle, CMCs have found their applications in the vast majority of the area, including space, refractories, energy storage, and automotive. This chapter considers classification and manufacturing CMCs. This chapter summarises state of the art for CMCs and their manufacturing techniques and lays the foundation for their micromachining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

eBook EUR 96.29 Price includes VAT (France)

Softcover Book EUR 126.59 Price includes VAT (France)

Hardcover Book EUR 179.34 Price includes VAT (France)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Similar content being viewed by others

A Review on Conventional Machining Challenges of Ceramic Matrix Composites

Chapter © 2024

Processing of Composites with Metallic, Ceramic, and Polymeric Matrices

Chapter © 2024

Current Advancements in Ceramic Matrix Composites

Chapter © 2017

References

  1. Ghasali, E., et al.: Preparation of silicon carbide/carbon fiber composites through high-temperature spark plasma sintering. J. Asian Ceram. Soc. 5(4), 472–478 (2017) ArticleGoogle Scholar
  2. Shirvanimoghaddam, K., et al.: Boron carbide reinforced aluminium matrix composite: physical, mechanical characterization and mathematical modelling. Mater. Sci. Eng., A 658, 135–149 (2016) ArticleGoogle Scholar
  3. Zhang, J., Tu, R., Goto, T.: 23—Cubic boron nitride-containing ceramic matrix composites for cutting tools. In: Low, I.M. (ed.) Advances in Ceramic Matrix Composites, pp. 570–586. Woodhead Publishing (2014) Google Scholar
  4. Nuruzzaman, D.M., Kamaruzaman, F.F.B.: Processing and mechanical properties of aluminium-silicon carbide metal matrix composites. IOP Conf. Ser. Mater. Sci. Eng. 114, 012123 (2016) ArticleGoogle Scholar
  5. Porwal, H., et al.: Graphene reinforced alumina nano-composites. Carbon 64, 359–369 (2013) ArticleGoogle Scholar
  6. Khaliq, J., et al.: Effect of the piezoelectric ceramic filler dielectric constant on the piezoelectric properties of PZT-epoxy composites. Ceram. Int. 43(2), 2774–2779 (2017) ArticleGoogle Scholar
  7. Li, L.: Modeling cyclic fatigue hysteresis loops of 2D woven ceramic matrix composites at elevated temperatures in steam. Materials 9(6) (2016) Google Scholar
  8. Zhang, K., et al.: Joining of Cf/SiC ceramic matrix composites: a review. Adv. Mater. Sci. Eng. 2018, 15 (2018) Google Scholar
  9. Curtin, W.A., Sheldon, B.W.: CNT-reinforced ceramics and metals. Mater. Today 7(11), 44–49 (2004) ArticleGoogle Scholar
  10. Miranzo, P., Belmonte, M., Osendi, M.I.: From bulk to cellular structures: a review on ceramic/graphene filler composites. J. Eur. Ceram. Soc. 37(12), 3649–3672 (2017) ArticleGoogle Scholar
  11. Al Sheheri, S.Z., et al.: The preparation of carbon nanofillers and their role on the performance of variable polymer nanocomposites. Des. Monomers Polym. 22(1), 8–53 (2019) ArticleGoogle Scholar
  12. Rathod, V.T., Kumar, J.S., Jain, A.: Polymer and ceramic nanocomposites for aerospace applications. Appl. Nanosci. 7(8), 519–548 (2017) ArticleGoogle Scholar
  13. Chu, B.T.T., et al.: Fabrication of carbon-nanotube-reinforced glass–ceramic nanocomposites by ultrasonic in situ sol–gel processing. J. Mater. Chem. 18(44), 5344–5349 (2008) ArticleGoogle Scholar
  14. Inam, F., et al.: Electrically conductive alumina–carbon nanocomposites prepared by spark plasma sintering. J. Eur. Ceram. Soc. 30(2), 153–157 (2010) ArticleGoogle Scholar
  15. Dassios, K.G., Matikas, T.E.: Damage assessment in a SiC-fiber reinforced ceramic matrix composite. J. Eng. 2013, 6 (2013) Google Scholar
  16. Mechanical properties of ceramic matrix composites exposed to rig tests. In: 28th International Conference on Advanced Ceramics and Composites B: Ceramic Engineering and Science Proceedings, pp. 153–159 Google Scholar
  17. Gadow, R., Kern, F., Ulutas, H.: Mechanical properties of ceramic matrix composites with siloxane matrix and liquid phase coated carbon fiber reinforcement. J. Eur. Ceram. Soc. 25(2), 221–225 (2005) ArticleGoogle Scholar
  18. van de Goor, G., Sägesser, P., Berroth, K.: Electrically conductive ceramic composites. Solid State Ionics 101–103, 1163–1170 (1997) Google Scholar
  19. Khaliq, J., et al.: Utilizing the phonon glass electron crystal concept to improve the thermoelectric properties of combined Yb-stuffed and Te-substituted CoSb3. Scripta Mater (0) Google Scholar
  20. Sparks, T.D., Fuierer, P.A., Clarke, D.R.: Anisotropic thermal diffusivity and conductivity of La-doped strontium niobate Sr2Nb2O7. J. Am. Ceram. Soc. 93(4), 1136–1141 (2010) ArticleGoogle Scholar
  21. Galusek, D., Galusková, D.: Alumina matrix composites with non-oxide nanoparticle addition and enhanced functionalities. Nanomaterials 5(1), 115–143 (2015) ArticleGoogle Scholar
  22. Wozniak, M., et al.: Thermal conductivity of highly loaded aluminium nitride–poly(propylene glycol) dispersions. Int. J. Heat Mass Transf. 65, 592–598 (2013) ArticleGoogle Scholar
  23. Streicher, E., et al.: Densification and thermal conductivity of low-sintering-temperature AlN materials. J. Eur. Ceram. Soc. 6(1), 23–29 (1990) ArticleGoogle Scholar
  24. Choi, H.-S., et al.: Structural, thermal and mechanical properties of aluminum nitride ceramics with CeO2 as a sintering aid. Ceram. Int. 42(10), 11519–11524 (2016) ArticleGoogle Scholar
  25. Fabrichnaya, O., et al.: Liquid phase formation in the system Al2O3–Y2O3–AlN: Part II. Thermodynamic assessment. J. Eur. Ceram. Soc. 33(13), 2457–2463 (2013) Google Scholar
  26. Molisani, A.L., Goldenstein, H., Yoshimura, H.N.: The role of CaO additive on sintering of aluminum nitride ceramics. Ceram. Int. 43(18), 16972–16979 (2017) ArticleGoogle Scholar
  27. Lee, H.M., Kim, D.K.: High-strength AlN ceramics by low-temperature sintering with CaZrO3–Y2O3 co-additives. J. Eur. Ceram. Soc. 34(15), 3627–3633 (2014) ArticleGoogle Scholar
  28. Yonezawa, T., et al.: Pressureless sintering of silicon-nitride composites. Compos. Sci. Technol. 51(2), 265–269 (1994) ArticleGoogle Scholar
  29. Cheng, L., et al.: Corrosion of a 3D-C/SiC composite in salt vapor environments. Carbon 40(6), 877–882 (2002) ArticleGoogle Scholar
  30. Niu, M., et al.: SiC/(SiC + glass)/glass coating for carbon-bonded carbon fibre composites. RSC Adv. 6(66), 61228–61234 (2016) ArticleGoogle Scholar
  31. Herrmann, M.: Corrosion of silicon nitride materials in aqueous solutions. J. Am. Ceram. Soc. 96(10), 3009–3022 (2013) ArticleGoogle Scholar
  32. Ahmad, K., Pan, W., Shi, S.-L.: Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites. Appl. Phys. Lett. 89(13), 133122 (2006) ArticleGoogle Scholar
  33. Ishikawa, T., et al.: A tough, thermally conductive silicon carbide composite with high strength up to 1600 ℃ in air. Science 282(5392), 1295 (1998) ArticleGoogle Scholar
  34. Chu, K., et al.: Thermal properties of graphene/metal composites with aligned graphene. Mater. Des. 140, 85–94 (2018) ArticleGoogle Scholar
  35. Walker, L.S., et al.: Toughening in graphene ceramic composites. ACS Nano 5(4), 3182–3190 (2011) ArticleGoogle Scholar
  36. Ramirez, C., et al.: Extraordinary toughening enhancement and flexural strength in Si3N4 composites using graphene sheets. J. Eur. Ceram. Soc. 34(2), 161–169 (2014) ArticleGoogle Scholar
  37. Kvetková, L., et al.: Influence of processing on fracture toughness of Si3N4 + graphene platelet composites. J. Eur. Ceram. Soc. 33(12), 2299–2304 (2013) ArticleGoogle Scholar
  38. Zhang, Y., et al.: Effect of graphene orientation on microstructure and mechanical properties of silicon nitride ceramics. Process Appl Ceram 12(1), 27–35 (2018) ArticleGoogle Scholar
  39. Tapasztó, O., et al.: Dispersion patterns of graphene and carbon nanotubes in ceramic matrix composites. Chem. Phys. Lett. 511(4–6), 340–343 (2011) ArticleGoogle Scholar
  40. Liu, J., Yan, H., Jiang, K.: Mechanical properties of graphene platelet-reinforced alumina ceramic composites. Ceram. Int. 39(6), 6215–6221 (2013) ArticleGoogle Scholar
  41. Lee, B., et al.: Simultaneous strengthening and toughening of reduced graphene oxide/alumina composites fabricated by molecular-level mixing process. Carbon 78, 212–219 (2014) ArticleGoogle Scholar
  42. Belmonte, M., et al.: Toughened and strengthened silicon carbide ceramics by adding graphene-based fillers. Scripta Mater. 113, 127–130 (2016) ArticleGoogle Scholar
  43. Pereira dos Santos Tonello, K., et al.: Fabrication and characterization of laminated SiC composites reinforced with graphene nanoplatelets. Mater. Sci. Eng. A 659, 158–164 (2016) Google Scholar
  44. Khaliq, J., et al.: Reduced thermal conductivity by nanoscale intergrowths in perovskite like layered structure La2Ti2O7. J. Appl. Phys. 117(7), 075101 (2015) ArticleGoogle Scholar
  45. Guo, X., et al.: Effect of calcining temperature on particle size of hydroxyapatite synthesized by solid-state reaction at room temperature. Adv. Powder Technol. 24(6), 1034–1038 (2013) ArticleGoogle Scholar
  46. James, N.K., et al.: High piezoelectric voltage coefficient in structured lead-free (K, Na, Li)NbO3 particulate—epoxy composites. J. Am. Ceram. Soc. 99(12), 3957–3963 (2016) ArticleGoogle Scholar
  47. Amonpattaratkit, P., Ananta, S.: Effects of calcination temperature on phase formation and particle size of Zn2Nb34O87 powder synthesized by solid-state reaction. Mater. Chem. Phys. 139(2), 478–482 (2013) ArticleGoogle Scholar
  48. Khaliq, J., et al.: Utilizing the phonon glass electron crystal concept to improve the thermoelectric properties of combined Yb-stuffed and Te-substituted CoSb3. Scripta Mater. 72–73, 63–66 (2014) ArticleGoogle Scholar
  49. Bernardo, M.S., et al.: Reaction pathways in the solid state synthesis of multiferroic BiFeO3. J. Eur. Ceram. Soc. 31(16), 3047–3053 (2011) ArticleGoogle Scholar
  50. Suchanek, W.L., Lencka, M.M., Riman, R.E.: Chapter 18—hydrothermal synthesis of ceramic materials. In: Palmer, D.A., Fernández-Prini, R., Harvey, A.H. (eds.) Aqueous systems at elevated temperatures and pressures, pp. 717–744. Academic Press, London (2004) ChapterGoogle Scholar
  51. Zhou, Y., et al.: Hydrothermal synthesis and piezoelectric property of Ta-doping K0.5Na0.5NbO3 lead-free piezoelectric ceramic. Ceram. Int. 35(8), 3253–3258 (2009) Google Scholar
  52. Villafuerte-Castrejón, E.M., et al.: Towards lead-free piezoceramics: facing a synthesis challenge. Materials 9(1) (2016) Google Scholar
  53. Cai, Z., et al.: Molten salt synthesis of lead lanthanum zirconate titanate ceramic powders. J. Alloy. Compd. 454(1), 466–470 (2008) ArticleGoogle Scholar
  54. Cai, Z., et al.: Large-scale synthesis of Pb1−xLaxTiO3 ceramic powders by molten salt method. J. Alloy. Compd. 420(1), 273–277 (2006) ArticleGoogle Scholar
  55. Adelina, I., Sophie, G.-F., Bernard, D.: BaTiO3 thick films obtained by tape casting from powders prepared by the oxalate route. Process. Appl. Ceram. 3(1–2), 65–71 (2009) Google Scholar
  56. Afrin, R., et al.: Synthesis of multiwalled carbon nanotube-based infrared radiation detector. Sens. Actuators, A 187, 73–78 (2012) ArticleGoogle Scholar
  57. Mazumder, S., et al.: Carbon nanotubes-porous ceramic composite by in situ CCVD growth of CNTs. Mater. Chem. Phys. 171, 247–251 (2016) ArticleGoogle Scholar
  58. Llorente, A., et al.: Jet milling as an alternative processing technique for preparing polysulfone hard nanocomposites. Adv. Mater. Sci. Eng. 2019, 8 (2019) ArticleGoogle Scholar
  59. Roy, S., et al.: Magnetic properties of glass-metal nanocomposites prepared by the sol-gel route and hot pressing. J. Appl. Phys. 74(7), 4746–4749 (1993) ArticleGoogle Scholar
  60. Palmero, P.: Structural ceramic nanocomposites: a review of properties and powders’ synthesis methods. Nanomaterials 5(2), 656–696 (2015) ArticleGoogle Scholar
  61. Rodiles, X., et al.: Carbon nanotube synthesis and spinning as macroscopic fibers assisted by the ceramic reactor tube. Sci. Rep. 9(1), 9239 (2019) ArticleGoogle Scholar
  62. Kim, E.-H., Jung, Y.-G., Paik, U.: Microstructure and mechanical properties of Al2O3 composites with surface-treated carbon nanotubes (CNTs): dispersibility of modified carbon nanotubes (CNTs) on Al2O3 matrix. J. Nanosci. Nanotechnol. 12(2), 1332–1336 (2012) ArticleGoogle Scholar
  63. Sikder, P., et al.: Improved densification and mechanical properties of spark plasma sintered carbon nanotube reinforced alumina ceramics. Mater. Chem. Phys. 170, 99–107 (2016) ArticleGoogle Scholar
  64. Han, X.-X., et al.: Microstructure, sintering behavior and mechanical properties of SiC/MoSi2 composites by spark plasma sintering. Trans. Nonferrous Metals Soc. China 28(5), 957–965 (2018) ArticleGoogle Scholar
  65. Tan, X., et al.: Functionally graded nano hardmetal materials made by spark plasma sintering technology. J. Metastable Nanocrystalline Mater. 23, 179–182 (2005) ArticleGoogle Scholar
  66. Kinloch, I.A., et al.: Composites with carbon nanotubes and graphene: an outlook. Science 362(6414), 547 (2018) ArticleGoogle Scholar
  67. Sun, J., Gao, L., Li, W.: Colloidal processing of carbon nanotube/alumina composites. Chem. Mater. 14(12), 5169–5172 (2002) ArticleGoogle Scholar
  68. Gallardo-López, Á., et al.: Spark plasma sintered zirconia ceramic composites with graphene-based nanostructures. Ceramics 1(1), 153–164 (2018) ArticleGoogle Scholar
  69. Wang, K., et al.: Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Mater. Res. Bull. 46(2), 315–318 (2011) ArticleGoogle Scholar
  70. Hintze, C., et al.: Facile sol–gel synthesis of reduced graphene oxide/silica nanocomposites. J. Eur. Ceram. Soc. 36(12), 2923–2930 (2016) ArticleGoogle Scholar
  71. Giampiccolo, A., et al.: Sol gel graphene/TiO2 nanoparticles for the photocatalytic-assisted sensing and abatement of NO2. Appl. Catal. B 243, 183–194 (2019) ArticleGoogle Scholar
  72. Román-Manso, B., et al.: Polymer-derived ceramic/graphene oxide architected composite with high electrical conductivity and enhanced thermal resistance. J. Eur. Ceram. Soc. 38(5), 2265–2271 (2018) ArticleGoogle Scholar
  73. Ji, F., et al.: Electrochemical performance of graphene nanosheets and ceramic composites as anodes for lithium batteries. J. Mater. Chem. 19(47), 9063–9067 (2009) ArticleGoogle Scholar
  74. Porwal, H., et al.: Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets. Sci. Technol. Adv. Mater. 14(5), 055007 (2013) ArticleGoogle Scholar
  75. Selzer, R., Friedrich, K.: Mechanical properties and failure behaviour of carbon fibre-reinforced polymer composites under the influence of moisture. Compos. A Appl. Sci. Manuf. 28(6), 595–604 (1997) ArticleGoogle Scholar
  76. Mouchon, E., Colomban, P.: Oxide ceramic matrix/oxide fibre woven fabric composites exhibiting dissipative fracture behaviour. Composites 26(3), 175–182 (1995) ArticleGoogle Scholar
  77. Sadighzadeh, A., et al.: Study of sintering temperature on the structure of silicon carbide membrane. J. Theor. Appl. Phys. 8(4), 169–173 (2014) ArticleGoogle Scholar
  78. Yin, C., et al., NaCa4V5O17: A low-firing microwave dielectric ceramic with low permittivity and chemical compatibility with silver for LTCC applications. J. Eur. Ceram. Soc. (2019) Google Scholar
  79. Oghbaei, M., Mirzaee, O.: Microwave versus conventional sintering: a review of fundamentals, advantages and applications. J. Alloy. Compd. 494(1), 175–189 (2010) ArticleGoogle Scholar
  80. Ohtaka, O., et al.: High-pressure and high-temperature generation using diamond/SiC composite anvils prepared with hot isostatic pressing. High Pressure Research 25(1), 11–15 (2005) ArticleGoogle Scholar
  81. She, J., Guo, J., Jiang, D.: Hot isostatic pressing of α-silicon carbide ceramics. Ceram. Int. 19(5), 347–351 (1993) ArticleGoogle Scholar
  82. Zulfia, A., et al.: Effect of hot isostatic pressing on cast A357 aluminium alloy with and without SiC particle reinforcement. J. Mater. Sci. 34(17), 4305–4310 (1999) ArticleGoogle Scholar
  83. Grasso, S., et al.: Low-temperature spark plasma sintering of pure nano WC powder. J. Am. Ceram. Soc. 96(6), 1702–1705 (2013) ArticleGoogle Scholar
  84. Byon, C., et al.: Numerical study of a SiC mould subjected to a spark plasma sintering process. Scripta Mater. 96, 49–52 (2015) ArticleGoogle Scholar
  85. Gavalda Diaz, O., et al.: The new challenges of machining Ceramic Matrix Composites (CMCs): review of surface integrity. Int. J. Mach. Tools Manuf 139, 24–36 (2019) ArticleGoogle Scholar
  86. Després, J.-F., Monthioux, M.: Mechanical properties of C/SiC composites as explained from their interfacial features. J. Eur. Ceram. Soc. 15(3), 209–224 (1995) ArticleGoogle Scholar
  87. O’Donnell, K., Kuhrt, C., Coey, J.M.D.: Influence of nitrogen content on coercivity in remanence-enhanced mechanically alloyed Sm-Fe-N. J. Appl. Phys. 76(10), 7068–7070 (1994) ArticleGoogle Scholar
  88. Akbari, H., Zeynali, H., Bakhshayeshi, A.: Interparticle interactions of FePt core and Fe3O4 shell in FePt/Fe3O4 magnetic nanoparticles. Phys. Lett. A 380(7), 927–936 (2016) ArticleGoogle Scholar

Author information

Authors and Affiliations

  1. Department of Mechanical and Construction Engineering, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, N1 8ST, UK Jibran Khaliq
  1. Jibran Khaliq
You can also search for this author in PubMed Google Scholar

Corresponding author

Editor information

Editors and Affiliations

  1. School of Engineering and the Built Environment, Edinburgh Napier University, Edinburgh, UK Islam Shyha
  2. School of Engineering, Newcastle University, Newcastle upon Tyne, UK Dehong Huo

Rights and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Cite this chapter

Khaliq, J. (2021). Ceramic Matrix Composites (CMCs). In: Shyha, I., Huo, D. (eds) Advances in Machining of Composite Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-71438-3_11

Download citation

Share this chapter

Anyone you share the following link with will be able to read this content:

Get shareable link

Sorry, a shareable link is not currently available for this article.

Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative